

OFFICE BUILDING Ontario, CA

Structural Technical Report 2 October 27, 2006 Proposed Alternate Floor Systems

Maggie Machinsky Structural Option Advisor: Andres Lepage

Executive Summary

This technical report examines the existing floor system on the Office Building and provides an in-depth analysis of 4 additional alternative floor systems. A detailed description of advantages and disadvantages that coincide with is system is provided and then compared with the original composite floor system.

The four alternative floor systems examined in this report are a hollow-core precast plank system, a one-way joist system, a non-composite deck and a two-way flat slab with drop panels. All tables and charts referenced for the alternative designs are included in the appendix.

After analyzing all four alternative systems and comparing them with the original floor system, it was concluded that the most sufficient system was the one-way joist system.

Existing Floor System

This building consists of six floors, all of which are above grade. The same floor system is used on each floor, which is a composite lightweight concrete on steel deck system, with typical bays running 38'x 30'.

Each floor area is approximately 28,000 square feet. The second floor through the sixth floor have nearly identical floor plans, as well as beam, and girder sizes and applied loads. This allows for uniform floor systems throughout the building.

The existing composite floor system consists of 3.25" of lightweight concrete fill with # 3 reinforcing bars spaced at 18" O.C. each way and is supported by a 3" VERCO W3 Formlock 20 gauge metal deck.

Alternative Floor Systems

One - Way Joist System for Multiple Spans

The first proposed alternative floor system is a one-way joist system for multiple spans. This system works well for this building for a number of reasons. The first being that the existing typical bays have long spans and one – way joist systems work well for long spans. It is very similar to the current floor system which means minimal changes will need to be made. Another advantage to this system is the joist depth. Since the joists are deep, the slab thickness is minimized which in turn reduces the dead load. One last advantage is that the pan forms can be re – used to reduce the cost of construction.

One disadvantage of this system is the time for construction for each floor. Although the pan forms may be re – used, the concrete must fully cure before the forms can be removed and used for the next floor. In addition, shoring must also be constructed to support the formwork until the concrete is fully cured.

With the aid of the CRSI tables, a sufficient design was found on page 8-28. The design specifies a joist span of 39' in the N-S direction with 20" deep joists and a 4.5" top slab. Each joist is reinforced with #8 bars at 12" O.C. at the top and one #7 and one #8 bar in the bottom.

ST/ ONE-W MULTI	AY JO		;				7″ rið Perimpo	0.0.		5) (2)	_	4,000 60,00	-
Depth					20" Dee	p Rib +	4.5" Top	51ab = 2	4.5" Tot	al Depth	,		
TOP BARS	Size Ø	15 11	9.5	#6 11.5	6 9.5	#7 11.5		#5 9.5	#6 11.5	/6 9.5	11.5	/8 12	
BOTTOM BARS	:	16 16	16 17	17 17	17 18	18 18	End Span Defl. Coeff.	15 16	16	16 17	17 17	7 8	Int. Spar Defi
Steel (psf)		1.20	1.40	1.63	1.89	2.15	(3)	1.36	1.64	1.93	2.23	2.65	Coeff (3)
CLEAR S	PAN			END SPA	N				18	TERIOR S	PAN		
32'-0'		155	210	267 0	332 0	358 * 399	12.975	231	298 0	380 0	415 * 462	424 • 485 •	7.985
33'~0'		136 0	188 0	241	303 0	338 • 365	14.675	206 0	271	347 0	394 • 425	402 * 458 *	9.031
34'-D		119 0	168 0	218 0	276 0	319 · 335	16.535	186 0	246	318 0	374 * 391	382 * 433 *	10.17
35'-0	.	103 0	149 0	197	251 0	301 • 307	18.569	167 0	223 0	291 0	355 * 360	362 · 410 ·	11.427
36'-0		88 0	132 0	177	229 0	281 0	20.784	149 0	202	266 0	331 0	345 · 389 ·	12.790
37'-0		75 0	117 0	159 0	208 0	258 0	23.191	132 0	282 0	243 0	305 0	328 ° 369 °	14.272
38'-0"		63 0	102 0	142 0	189 0	236 0	25.802	117	165 0	222 0	280 0	313 * 348	15.878
39'-0"		51 0	89 0	127	171 0	216 0	28.627	103 0	148 0	203 0	258 0	298 * 322	17.61
40'-0"		41 0	77 0	113 0	155 0	197 0	31.678	90 0	133 0	185 0	237 0	284 * 298	19.494
41 -0"			65 0	100 0	139 0	180 0	34,967	78 0	119 0	168 0	218 0	271 * 276	21.518
42'-0"			54 0	87 0	125 0	164 0	38.505	66 0	105 0	153 0	00S	256 0	23.895
43'-0"			45 0	76 0	112	149 0	42.305	56 0	93 0	138 0	184 0	236 0	26.034
44'-0"				65 0	100 0	135 0	46.380	46 0	82 0	125 0	168 0	219 0	28.542
45'-0"				55 0	88 0	122	50.742		71	112	154 0	202 0	31.226

Non-Composite System

The second proposed system is a concrete slab on metal decking supported by non-composite steel beams.

The fact that the beams are non-composite is the only difference between this floor system and the existing one. Since the beams are non-composite, the shear studs are eliminated which results in a faster construction time, and a reduction in labor costs.

The major disadvantage of this system is larger beam sizes. By removing the shear studs, the slab and steel beams no longer act together, therefore causing only the beam to counteract the moment. This larger beam size then takes away from the plenum space for mechanical equipment and electrical conduit., and the only way to make up for this lost space is to increase the floor-to-floor height.

This system was designed with the aid of RAM Steel, which designed for W18x40 beams And W27x84 girders as compared to W12x50 beams and W24x68 girders in the original composite system.

Two-Way Flat Slab With Drop Panels

The next system designed is a two-way flat slab with drop panels. This system works well for square bays. The addition of the drop panels prevents punching shear caused by the columns and allows for greater moment to be absorbed at the supports as compared to a two-way flat slab without drop panels. In addition, the slab thickness and column size may be reduced.

Much like the one-way joist system, an increase in construction time will result from the time it takes to construct the formwork and for the concrete to cure.

As before, the CRSI tables were referenced and an adequate design for a 30'x30' bay was found on page 10-26. The design specifies 10"x10" columns with a 12" thick slab. The column strips are reinforced with 15 #7 bars in the top and 17 #6 bars in the bottom while the middle strip is reinforced with 10 #7 bars in the top and 15 #5 bars at the bottom.

rade	60 Bars		AT SL	AD 31	SIEM		SQUAR	E EDGE	PANEL	With Dro	p rane		No Bean	**	50	JUAKE	NTERIO	PANEL	With D	op Pane	• (2)	No Bear	ms .
PAN	Factored Superim-		re Drop		Column		REINFO	RCING	BARS (E	. W .)			OMENT	s	Factored Superim-	Square Column $\ell_c = 12' \cdot 0^{*}$ (3)							
c.	posed		anel	$l_c = 12' - 0''$			lumn Strip		Middle		Total	Edge	Bot.	Int.	posed			Col.	Strip	Mid.	Strip	Total	(cu. 1
= l ₂ (f1)	(psf)	Depth (in.)	Width (ft)	Size (in.)	α_{ec}	Top Ext.	Bot.	Top Int.	Bot.	Top Int.	Steel (psf)	(—) (f1-k)	(+) (f1-k)	(_) (ft-k)	Load (psf)	Size (in.)	ate	Тор	Bot.	Тор	Bot.	Steel (psf)	(sq. f
	,			h = 12 i	n. = TO	TAL SLA	B DEPTH	BETWEE	IN DRO	PANEL	s					h = 12 i	n. – TO1	AL SLA	B DEPTH	BETWEE	N DROP	PANE	LS
25	100	3	8.33	12	0.144	12-#5	10-#6	18-#5	11-#5	11-#5	2.76	45.8	333.6	413.6	100	12	0.072	16-#5	11-#5	11-#5	11-#5	2.66	1.0
25	200	3	8.33	15	0.298	12-#5	13-#6	12-#7	12-15	11-#5	3,13	107.6	407.4	523.6	200	17	0.227	14-#6	11-#5	11-#5	11-#5	2.87	1.0
25	300	5	8,33	18	0.525	12-#5	11-#7	12-#7	13-#5	11-#5	3,41	195.8	466.8	626.0	300	21	0.427	15-#6	13-#5	11-#5	11-#5	3,10	1.0
25	400	7	8.33	20	0.705	12-#5	12-#7	13-#7	15-#5	13-#5	3.69	276.4	528.8	728.8	400	24	0.616	15-#6	15-#5	12-#5	11-#5	3.28	1.0
25	500	9	8.33	22	0.916	14-#5	11-#8	13-#7	9-#7	15-#5	4.29	368.2	591.0	831.8	500	25	0,674	12-#7	13-#6	10-#6	12-#5	3,79	1.0
25	600	9	10.00	23	0.976	12-#6	19-#7	12-#8	11-#7	9-#7	5.20	434.1	730.7	946.9	600	25	0.634	18-#6	9-#8	11-#6	15-#5	4.42	1.
25	700	11	10.00	25	1.222	19-#5	20-#7	12-#8	10-#8	10-#7	5.84	539,3	829.6	1048.4	700	25	0.611	18-#6	11-#8	10-#7	10-#7	5.22	1.
6	100	3	8.66	12	0.141	12-#5	16-#5	14-#6	11-#5	11-#5	2.75	51,1	376.7	466.9	100	12	0.070	17-#5	11-#5	11-#5	11-#5	2.60	1.
6	200	5	8.66	15	0.288	12-#5	14-#6	12-#7	13-#5	11-#5	3,13	118.2	461.2	591.5	200	18	0.257	14-#6	12-#5	11-#5	11-#5	2.82	1.
6	300	5	8.66	18	0.513	12-#5	12-#7	26-#5	15-#5	9-#6	3.63	218.2	529.3	708.5	300	21	0.417	13-#7	15-#5	12-#5	11-#5	3.31	1.
6	400	7	8.66	20	0.689	13-#5	11-#8	14-#7	9-#7	15-#5	4.07	308.6	600.3	825.5	400	24	0.600	13-#7	17-#5	13-∦5	12-#5	3.54	1.
6	500	9	8.66	22	0.894	16-#5	12-#8	12-#8	10-#7	9-#7	4.53	410.1	665.4	939.4	500	26	0.733	13-#7	14 <i>-#</i> 6	15-#5	13-#5	3.94	1
6	600	11	10.39	24	1.047	18-#5	20-#7	12-#8	10-#8	10-#7	5.39	506.4	797.6	1064.4	600	26	0.672	18-#6	10-#8	10-#7	16-#5	4.60	1.
6	700	11	10.39	25	1,191	15-#6	17-#8	22-#6	15-#7	15-#6	6.16	601.8	909.6	1184.6	700	26	0.672	12-∦8	12-#8	14-#6	10-#7	5.40	1.
7	100	5	9.00	12	0.133	12-#5	18-#5	14-#6	12-#5	12-∄5	2.83	54,5	426.0	526.7	100	12	0.066	12-#6	12-#5	12-#5	12-#5	2.65	1
27	200	5	9.00	15	0,283	12-#5	9-#8	13-∦7	15-#5	12-#5	3.41	131.2	519.5	665.5	200	18	0.251	12-#7	14-#5	12-#5	12-#5	3.06	1
27	300	7	9.00	18	0.487	12-#5	11-#8	26-#5	9-#7	10-#6	3.87	236.8	598.5	797.6	300	22	0.453	12-#7	9-#7	9-#6	12-#5	3.38	1 1
27	400	9	9.00	20	0.656	13-#5	12-#8	27-#5	14-#6	9-#7	4.29	338.2	681.4	932.7	400	24	0.568	13-#7	14-#6	15-#5	9-#6	3.77	1
27	500	11	9.00	22	0.858	16-#5	19-#7	12-#8	9-#8	10-#7	4.98	452.8	755.1	1061.5	500	26	0.698	18-#6	12-#7	9-∦7	15-#5	4.25	1
7	600	11	10.80	24	1.022	14-#6	16-#8	22 <i>-</i> #6	10-#8	9-#8	5.60	562.1	860.9	1196.8	600	27	0.733	12-#8	11-#8	14-#6	18-#5	4.94	1
8	100	5	9.33	12	0,131	13-#5	11-#7	16-#6	10-#6	12-#5	3.04	60.3	476.7	589.2	100	12	0.065	14-#6	12-#5	12-#5	12-#5	2.67	1
8	200	5	9.33	15	0.278	13-#5	18-#6	16-∦7	12-#6	13-#5	3.57	144.9	582.4	745.4	200	18	0.246	13-#7	15-#5	12-∦5	12-#5	3.10	
8	300	7	9.33	18	0.477	13-∦5	12-#8	16-#7	10-#7	16-#5	4.05	261.8	672.3	894.3	300	22	0.442	26-#5	13-#6	10-#6	12-#5	3.44	
8	400	9	9.33	20	0.642	15-#5	14-#8	16-#7	12-#7	10-#7	4.81	374.4	766.1	1046.5	400	24	0.554	15-#7	12-#7	12-#6	15-#5	4.22	1
8	500	11	11.20	23	0.870	18-#5	16-#8	22-#6	10-#8	15-#6	5.24	511.8	845.1	1189,8	500	27	0.714	15-#7	18-#6	14-#6	12-#6	4.54	1
9	100	7	9.66	12	0.123	13-#5	17-#6	15-#6	15-#5	13-#5	3.10	63.5	534.6	659.3	100	12	0.061	13-#6	13-#5	13-#5	13-#5	2.69	
9	200	7	9.66	15	0.264	13-∦5	15-#7	19-#6	10-#7	15-#5	3.76	155.7	653.8	834.3	200	18	0.234	13-#7	12-#6	13-#5	13-#5	3.24	
9	300	9	9.66	19	0.542	13-#5	13-#8	15-#7	15-#6	10-#7	4.26	317.5	738.3	992.9	300	22	0.417	26-#5	11-#7	16-#5	10-#6	3.70	
29	400	111	9.66	20	0.624	14-#5	16-#8	16-#7	10-#8	11-#7	5.04	411.4	859.9	1171.3	400	24	0.526	15-#7	10-#8	10-#7	16-#5	4.35	
9	500	11	11.60	23	0.851	14-#6	23-#7	14-#8	11-#8	10-#8	5.72	565.1	947.2	1330.5	500	27	0.696	13-#8	12-#8	12-#7	10-#7	5.07	1
30	100	7	10.00	12	0.121	14-#5	11-#8	17-#6	12-#6	13-#5	3.33	69.8	593.6	731.8	100	12	0.060	15-#6	15-#5	13-#5	13-#5	2.81	1
30	200	7	10.00	15	0.260	14-#5	13-#8	16-#7	11-#7	12-#6	3.99	170,9	727.2	927.0	200	18	0.230	14-#7	19-#5	15-#5	13-#5	3.32	1
30	300	, ,	10.00	19	0.532	14-#5	20-#7	17.#7	10-#8	14-#6	4.70	348.6	822.7	1104.6	300	22	0.408	15-47	17-#6	10-#7	15-#5	4.01	1
30	400	, n	10.00	20	0.612	1-6#5	23-#7	14-#8	12-#8	13-#7	5,34	452.1	958.6	1303.5	400	24	0.514	16-#7	15-#7	11-#7	18-#5	4.61	1

Hollow-Core Precast Plank

Lastly, a hollow-core precast plank system was chosen as the final system to be analyzed. Numerous advantages of this system include quick assembly time once on site, no shoring is required and the entire thickness including the top slab is only 10". Since these planks are manufactured in a plant, high quality is assured. Longer spans and higher load capacities are possible because the steel strands are pre-stressed.

As with all systems, there are also some disadvantages of hollow-core precast planks. Depending on the company the planks are ordered from, the leed time may be very long which means orders must be placed well in advance to the start of construction or the project will be delayed. Skilled workmanship is required in the assembly of these planks to ensure quality, especially because the joints between panels may be complicated. Using the 6th Edition of the PCI Handbook, a design was found on page 2-32. For a 38' span a sufficient design includes a 4" wide and 8" thick plank covered by a 2" top slab. The plank is reinforced with 5 straight #8 bars.

68-S	476 43 0.3 0.3 0.3 0.4	0.393 3 0.3	361 0.4	332 0.4	309 0.5	286 0.5	269 0.6	253 0.6	235 0.7	223	209 0.7	200 0.8 1.0	180 0.8	165 0.8	153 0.8	142 0.8	132 0.8	121 0.8	110 0.8	101 0.8 0.7	92 0.7	84 0.7	// 0.6	70 0.5	63 0.4	56 0.2	51 0.1-	45 -0.1	40 0.3
78-S	488 44 0.3 0. 0.4 0.	2 402	370 0.5	341 0.5	318 0.6	295 06	275 07	259 07	241 0.8	229 0.9	215 0.9	203 1.0	195 1 0	180 1 0	168 11	157 11	144 1 1	135 11	126 11	118 11	110 11	101 11	92 1.0	84 0.9	77 0.8	70 07	64 0.6	58 0.5	52 0.3

4HC8 + 2

Table of sa	fesi	upe	rim	pos	sed	ser	vice	loa	ad (psf)	an	d c	amb	bers	៖ (in	.)				2	in. I	Nor	mal	We	eigh	t To	oppi	ing
Strand														Spa	n, ft													
Designation Code	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
66-S	0.2	445 0.2	394 0.2	340 0.2	204	256 0.2	224 0.3	197 0.3	173 0.3	153 0.3	135 0.2	0.2	105	93 0.2	82 0.1	0.0	0.0	45 -0.1	0.2	0.0								
76-S	0.2 498 0.2 0.2	457 0.2 0.2	420 0.3	0.2 387 0.3	0.2 347 0.3	304 0.3 0.3	267 0.3	235 0.3	208 0.4	0.1 184 0.4	164 0.4	-0.1 146 0.3	130 0.3	116 0.3	-0.4 103 0.3 -0.2	88 0.2	74 0.2	-0.9 62 0.1 -0.7	51 0.0	41 0.1	0.2							_
58-S	492 0.3 0.3	451 0.3 0.3	414 0.3 0.4	384 0.4 0.4	357 0.4 0.4	333 0.5 0.4	310 0.5 0.5	293 0.5 0.5	274 0.5 0.5	245 0.6 0.5	219 0.6 0.4	196 0.6 0.3	177 0.6 0.3	159 0.6 0.3	143 0.6	126 0.5	110 0.5	95 0.5 -0.2	82 0.1	70 0.3	59 0.2	49 0.1 -1.2	40 0.0	0.1				
68-S		463 0.4 0.4	426 0.4 0.5	393 0.5 0.5	0.5	342 0.6 0.6	319 0.6 0.6	299 0.7 0.6	282 0.7 0.7	267 0.7 0.7	251 0.8 0.7	239 0.8 0.6	216 0.8 0.6	195 0.8 0.6	177 0.8 0.5	158 0.8 0.4	140 0.8 0.3	124 0.8 0.2	110 0.8 0.0	97 0.7 0.2	84 0.7	73 0.6 -0.6	62 0.5	53 0.4	44 0.2 -1.6	36 0.1 - -2.0 -	0.1	
78-S		472 0.5 0.5	435 0.5 0.6	402 0.6 0.6	375 0.6 0.7	348 0.7 0.7	325 0.7 0.8	305 0.8 0.8	288 0.9 0.8	273 0.9 0.9	257 1.0 0.9	245 1.0 0.9	232 1.0 0.9	220 1.1 0.8	207 1.1 0.8	186 1.1 0.7	167 1.1 0.7	149 1.1 0.6	133 1.1 0.4	119 1.1 0.3	106 1.1 0.1	94 1.0 -0.1	83 0.9 -0.3	73 0.9 -0.6	64 0.7 -0.9			38 0.3 -2.2

Strength is based on strain compatibility; bottom tension is limited to $7.5\sqrt{f_c'}$; see pages 2–7 through 2–10 for explanation.

Comparison Chart

System	Depth	Weight		Cost	
	(in)	(psf)	Mat.	Inst.	Total
One-Way Joist	25.5	105	\$7.10	\$9.45	\$16.55
Non-Composite	4.75	52	\$11.45	\$6.20	\$17.65
Two-Way Flat Slab	12	150	\$7.00	\$8.25	\$15.25
Hollow-Core Precast	10	68	\$14.35	\$4.93	\$19.28
Composite	6.25	70	\$8.80	\$4.61	\$13.41

Conclusion

After considering the advantages and disadvantages of each system, the best alternative floor system appears to be the one-way joist system. Although it is a bit more expensive than the two-way flat slab, the one-way joist system weighs considerably less, and this system is very similar to that of the existing composite system.

Appendix References

PCI Design Handbook - 6th Edition

- CRSI Design Handbook 2002
- Vulcraft website for composite slab information